
A Characterization of
State Spill in Modern OSes

Kevin Boos Emilio Del Vecchio Lin Zhong

ECE Department, Rice University

EuroSys 2017

2

How do we deal  
with complexity?

Modularization

3

1234complex 
system

Modularization

4

1 2

3 4

5

Reducing complexity should
make things easier…

• Process migration
• Fault isolation &  

fault tolerance
• Live update, hot-

swapping, software
virtualization

• Maintainability
• Security and more

1 2

3 4

Effects of interactions:
• Propagation of data  

and control
• Changes to the state  

of each entity

6

Modularization is not enough!

interactions have  
complex effects!

state spill

1 2

3 4

State spill in a nutshell

a new term to describe the phenomenon when:

 
A software entity’s state undergoes

lasting change as a result of an
interaction with another entity.

7

Outline of contributions
1. Define and identify state spill as a root cause

of challenging problems in computing

2. Classify state spill examples collected from
real OSes

3. Automate state spill detection with STATESPY

4. Results from Android system services

8

Definition of State Spill
9

State spill definition by example

10

public class SystemService {
 static int sCount;
 byte mConfig;
 List<Callback> mCallbacks;
 int unrelated;

 public void addCallback(
 int id, byte cfg,
 Callback cb) {
 int b = id;
 Log.print("id=" + b);
 mConfig = cfg;
 mCallbacks.add(cb);
 sCount++;
 }
}

public void main() {
 int id = ;
 byte cfg = ;
 fn cb = handleCb;

 service.addCallback(
 id, cfg, cb);

 log(“added cb!”);
}

void handleCb() {
 // do something
}

Before
(empty)

During

After

Source (application) Destination (system service)

temporary

STATESPY: Automated State Spill Detection
11

STATESPY: runtime + static analysis

12

Modification-reachable
whitelist

Runtime
analysis

Static
analysis

Resolution requests

Running
software
entity

Runtime type resolutions

Source
files

State spill
results

• Goal: help developers understand how  
 state spill occurs in their entities

State Spill in Android Services
13

Evaluating Android system services

14

Application Service Proxy StubBinder IPC
transactions

• StateSpy monitors service stub boundary (onTransact)
• monkey induces real apps to invoke various transactions

Found state spill in 94% of service stubs analyzed.

Secondary state spill

15

Entity
S

Entity
D1

Entity
D2

 User Applications

KeyguardServiceVibratorService AlarmManagerService UsbService AudioServiceUiModeManagerService

InputManagerService ActivityManagerService

StatusBarManagerService

PowerManagerService

PackageManagerService

HdmiControlService

NotificationManagerService UserManagerService

WindowManagerService

DisplayManagerService

SensorService

Hinders fault tolerance, hot-swapping, maintainability

Case study: Flux [EuroSys’15]

• Android app migration via record & replay
• Manually handles residual dependencies with

decorator methods for each service transaction
• Significant effort to overcome state spill

16

App

Sensor Location

Alarm Notification

Input

Clipboard

Sensor Location

Alarm Notification

Input

Clipboard

App
App

Alex Van’t Hof, et al., “Flux: multi-surface computing in Android”, EuroSys 2015.

Case study: Flux [EuroSys’15]

• Android app migration via record & replay
• Manually handles residual dependencies with

decorator methods for each service transaction
• Significant effort to overcome state spill

17

App

Sensor Location

Alarm Notification

Input

Clipboard

Sensor Location

Alarm Notification

Input

Clipboard

App App

? ?

Alex Van’t Hof, et al., “Flux: multi-surface computing in Android”, EuroSys 2015.

Case study: Flux [EuroSys’15]

• Android app migration via record & replay
• Manually handles residual dependencies with

decorator methods for each service transaction
• Significant effort to overcome state spill

18

App

Sensor Location

Alarm Notification

Input

Clipboard

Sensor Location

Alarm Notification

Input

Clipboard

App App

• Using Flux apps, we reproduced 113 unique
transactions for analysis with STATESPY

Comparison with Flux

19

Not  
decorated
 77%

Flux 
23%

• State spill identifies problematic service
transactions
• and which states need special handling

High correlation with state spill

20

Causes  
State Spill

92%

Not  
decorated
 77%

Flux 
23%

STATESPY catches what’s missing

21

• Found state spill in 18 (21%) undecorated
methods, each is potentially dangerous

• Easy detection demonstrates STATESPY’s utility

Safely ignored
79%

missed
21% Not  

decorated
 77%

Flux 
23%

Parting Thoughts
22

Designs to avoid state spill
• Client-provided resources
• Stateless communication
• Separation of multiplexing from indirection
• Hardening of entity state
• Modularity without interdependence

23

RESTful principle

Related work
• Coupling[1]/modularity[2] as a necessary condition
• Info-flow analysis[3,4]
• Designs that partially reduce state spill

• Compartmentalizing important states
• Barrelfish/DC[5], Microreboot[6], CuriOS[7]

• RESTful architectures (web)[11,12]

24

Conclusion
• State spill is an underlying problem that hinders

many computing goals
• Prevalent and deeply ingrained in many OSes
• Reducing state spill will lead to better designs

• More so than minimizing coupling, etc.

• Next steps: redesign OS to minimize state spill

STATESPY & more: http://download.recg.org
25

References
(1) J. Offutt, et al., “A software metric system for module coupling.” Journal of Systems and

Software, 1993.
(2) B. Ford, et al., “The Flux OSKit: A substrate for kernel and language research.” SOSP, 1997.
(3) S. Arzt, et al., “FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps.” PLDI, 2014.
(4) W. Enck, et al., “TaintDroid: an information-flow tracking system for realtime privacy monitoring

on smartphones.” OSDI, 2010.
(5) G. Zellweger, et al., “Decoupling cores, kernels, and operating systems.” OSDI, 2014.
(6) G. Candea, et al., “Microreboot - a technique for cheap recovery.” OSDI, 2004.
(7) F. David, et al., “CuriOS: Improving reliability through operating system structure.” OSDI, 2008.
(8) D. Engler, et al., “Exokernel: An operating system architecture for application-level resource

management.” SOSP, 1995.
(9) D. Porter, et al., “Rethinking the library os from the top down.” ASPLOS, 2011.
(10) A. Madhavapeddy, et al., “Unikernels: Library operating systems for the cloud.” ASPLOS,

2013.
(11) C. Pautasso and E. Wilde. “Why is the web loosely coupled?: a multi-faceted metric for

service design.” WWW, 2009.
(12) C. Pautasso, et al., “RESTful web services vs. ’big’ web services: making the right

architectural decision.” WWW, 2008.

26

